NOC:Introduction to Finite Volume Methods-I


Lecture 1 - Introduction to Finite Volume Method


Lecture 2 - Governing Equations and Discretization


Lecture 3 - Boundary Conditions and Classification of PDEs


Lecture 4 - Mathematical Description of fluid flow - I


Lecture 5 - Mathematical description of fluid flow - II


Lecture 6 - Discretization Process - I


Lecture 7 - Discretization Process - II


Lecture 8 - Discretization Process - III


Lecture 9 - Taylor Series - I


Lecture 10 - Taylor Series - II


Lecture 11 - Derivatives and Errors - I


Lecture 12 - Derivatives and errors - II


Lecture 13 - Grid Transformation


Lecture 14 - Finite Volume Formulation - I


Lecture 15 - Finite Volume Formulation - II


Lecture 16 - Properties of discretized equations


Lecture 17 - Introduction to Finite Volume Mesh


Lecture 18 - Structured Mesh System


Lecture 19 - Unstructured Mesh System - I


Lecture 20 - Unstructured Mesh System - II


Lecture 21 - Properties of Unstructured Mesh - I


Lecture 22 - Properties of Unstructured Mesh - II


Lecture 23 - Finite Volume discretization of Diffusion Equation - I


Lecture 24 - Finite Volume discretization of Diffusion equation - II


Lecture 25 - Finite Volume discretization of Diffusion equation - III


Lecture 26 - Discretization of Diffusion Equation for Cartesian orthogonal systems - I


Lecture 27 - Discretization of Diffusion Equation for Cartesian orthogonal systems - II


Lecture 28 - Calculation of Diffusivity


Lecture 29 - Discretization of Diffusion Equation for non-Cartesian orthogonal systems - I


Lecture 30 - Discretization of Diffusion Equation for non-orthogonal systems - I


Lecture 31 - Discretization of Diffusion Equation for non-orthogonal systems - II


Lecture 32 - Discretization of Diffusion Equation for non-orthogonal systems - III


Lecture 33 - Gradient Calculation for Diffusion Equation - I


Lecture 34 - Gradient Calculation for Diffusion Equation - II


Lecture 35 - Gradient Calculation for Diffusion Equation - III


Lecture 36 - Properties of matrices - I


Lecture 37 - Properties of matrices - II


Lecture 38 - Error Analysis - I


Lecture 39 - Error Analysis - II


Lecture 40 - Error Analysis - III