NOC:Symmetry and Group Theory


Lecture 1 - Symmetry point group: Introduction


Lecture 2 - Symmetry point group: Examples - Part I


Lecture 3 - Symmetry point group: Examples - Part II


Lecture 4 - Symmetry point group: Examples - Part III


Lecture 5 - Symmetry point group: Examples - Part IV


Lecture 6 - Transformation matrices and Matrix representation


Lecture 7 - More on Matrix representation: Cartesian coordinates in C2v point group


Lecture 8 - Matrix representation: the way ahead


Lecture 9 - Introduction to Group Theory


Lecture 10 - Group Multiplication Tables


Lecture 11 - Groups and subgroups


Lecture 12 - Classes, Similarity transformations


Lecture 13 - Introduction to Matrices


Lecture 14 - Application of matrices in solution of simultaneous equations


Lecture 15 - Matrix eigenvalue equation


Lecture 16 - Matrix eigenvalue equation: an example


Lecture 17 - Similarity Transformations


Lecture 18 - Back to transformation matrices


Lecture 19 - Matrix representation revisited


Lecture 20 - Function space and Transformation Operators


Lecture 21 - Transformation Operators form the same group as transformation matrices


Lecture 22 - Transformation Operators form a unitary representation for orthonormal basis


Lecture 23 - Transformation Operators: Switching Bases


Lecture 24 - Equivalent representations


Lecture 25 - Unitary Transformation


Lecture 26 - Unitary Transformations (Continued...)


Lecture 27 - Reducible and Irreducible Representations


Lecture 28 - Irreducible Representations and Great Orthogonality Theorem


Lecture 29 - Character Tables: C2v


Lecture 30 - Character Tables: C2v and C3v


Lecture 31 - Practice Session: Review of Some Questions and Solutions


Lecture 32 - Reducible to Irreducible Representations


Lecture 33 - Character Tables of Cyclic Groups


Lecture 34 - Symmetry of Normal Modes: D3h


Lecture 35 - Symmetry of Normal Modes: D3h (Continued...)


Lecture 36 - Symmetry of Normal Modes: a shortcut


Lecture 37 - Recap: Reducible Representation for Normal Modes


Lecture 38 - Contribution of internal motion to normal modes


Lecture 39 - Normal mode analysis: some examples


Lecture 40 - Infrared and Raman spectroscopy


Lecture 41 - IR and Raman activity


Lecture 42 - IR and Raman activity: examples


Lecture 43 - Symmetry Adapted Linear Combinations (SALC)


Lecture 44 - SALC:BeH2


Lecture 45 - SALC:CH4 Introduction


Lecture 46 - SALC:CH4


Lecture 47 - Projection Operators


Lecture 48 - Projection Operators (Continued...)


Lecture 49 - Generating SALC’s using Projection Operators


Lecture 50 - Generating SALC’s using Projection Operators (Continued...)


Lecture 51 - Oh complex and Group-subgroup relation


Lecture 52 - Group-Subgroup Relation


Lecture 53 - SALCs as Pi-MO andCyclopropenyl group


Lecture 54 - SALCs as Pi-MO, Cyclopropenyl group


Lecture 55 - SALCs as Pi-MO, Benzene


Lecture 56 - LCAO Huckel approximation


Lecture 57 - Huckel approximation: Naphthalene


Lecture 58 - Stationary states, Multiplicity, Ethylene


Lecture 59 - Napthalene - I


Lecture 60 - Napthalene - II


Lecture 61 - Napthalene - III


Lecture 62 - Transition Metal Complexes: CFT and LFT


Lecture 63 - Jahn-Teller Theorem, Tetragonal Distortion MOT:ML6, Sigma and Pi Bonds


Lecture 64 - MOT approach of bonding,H2O,Ferrocene


Lecture 65 - MOT approach of bonding,H2O,Ferrocene


Lecture 66 - Derivation: Great Orthogonality Theorem - I (Schurrs Lemma 1)


Lecture 67 - Derivation: Great Orthogonality Theorem - II (Schurrs Lemma 2)


Lecture 68 - Derivation: Great Orthogonality Theorem - III