Lecture 1 - Symmetry point group: Introduction

Lecture 2 - Symmetry point group: Examples - Part I

Lecture 3 - Symmetry point group: Examples - Part II

Lecture 4 - Symmetry point group: Examples - Part III

Lecture 5 - Symmetry point group: Examples - Part IV

Lecture 6 - Transformation matrices and Matrix representation

Lecture 7 - More on Matrix representation: Cartesian coordinates in C2v point group

Lecture 8 - Matrix representation: the way ahead

Lecture 9 - Introduction to Group Theory

Lecture 10 - Group Multiplication Tables

Lecture 11 - Groups and subgroups

Lecture 12 - Classes, Similarity transformations

Lecture 13 - Introduction to Matrices

Lecture 14 - Application of matrices in solution of simultaneous equations

Lecture 15 - Matrix eigenvalue equation

Lecture 16 - Matrix eigenvalue equation: an example

Lecture 17 - Similarity Transformations

Lecture 18 - Back to transformation matrices

Lecture 19 - Matrix representation revisited

Lecture 20 - Function space and Transformation Operators

Lecture 21 - Transformation Operators form the same group as transformation matrices

Lecture 22 - Transformation Operators form a unitary representation for orthonormal basis

Lecture 23 - Transformation Operators: Switching Bases

Lecture 24 - Equivalent representations

Lecture 25 - Unitary Transformation

Lecture 26 - Unitary Transformations (Continued...)

Lecture 27 - Reducible and Irreducible Representations

Lecture 28 - Irreducible Representations and Great Orthogonality Theorem

Lecture 29 - Character Tables: C2v

Lecture 30 - Character Tables: C2v and C3v

Lecture 31 - Practice Session: Review of Some Questions and Solutions

Lecture 32 - Reducible to Irreducible Representations

Lecture 33 - Character Tables of Cyclic Groups

Lecture 34 - Symmetry of Normal Modes: D3h

Lecture 35 - Symmetry of Normal Modes: D3h (Continued...)

Lecture 36 - Symmetry of Normal Modes: a shortcut

Lecture 37 - Recap: Reducible Representation for Normal Modes

Lecture 38 - Contribution of internal motion to normal modes

Lecture 39 - Normal mode analysis: some examples

Lecture 40 - Infrared and Raman spectroscopy

Lecture 41 - IR and Raman activity

Lecture 42 - IR and Raman activity: examples

Lecture 43 - Symmetry Adapted Linear Combinations (SALC)

Lecture 44 - SALC:BeH2

Lecture 45 - SALC:CH4 Introduction

Lecture 46 - SALC:CH4

Lecture 47 - Projection Operators

Lecture 48 - Projection Operators (Continued...)

Lecture 49 - Generating SALC’s using Projection Operators

Lecture 50 - Generating SALC’s using Projection Operators (Continued...)

Lecture 51 - Oh complex and Group-subgroup relation

Lecture 52 - Group-Subgroup Relation

Lecture 53 - SALCs as Pi-MO andCyclopropenyl group

Lecture 54 - SALCs as Pi-MO, Cyclopropenyl group

Lecture 55 - SALCs as Pi-MO, Benzene

Lecture 56 - LCAO Huckel approximation

Lecture 57 - Huckel approximation: Naphthalene

Lecture 58 - Stationary states, Multiplicity, Ethylene

Lecture 59 - Napthalene - I

Lecture 60 - Napthalene - II

Lecture 61 - Napthalene - III

Lecture 62 - Transition Metal Complexes: CFT and LFT

Lecture 63 - Jahn-Teller Theorem, Tetragonal Distortion MOT:ML6, Sigma and Pi Bonds

Lecture 64 - MOT approach of bonding,H2O,Ferrocene

Lecture 65 - MOT approach of bonding,H2O,Ferrocene

Lecture 66 - Derivation: Great Orthogonality Theorem - I (Schurrs Lemma 1)

Lecture 67 - Derivation: Great Orthogonality Theorem - II (Schurrs Lemma 2)

Lecture 68 - Derivation: Great Orthogonality Theorem - III