NOC:Molecular Spectroscopy: A Physical Chemists Perspective


Lecture 1 - Frequency Domain Spectroscopy: An Introduction


Lecture 2 - Schematics of Instrumentation for FD Spectroscopy


Lecture 3 - Sensitivity Light Collection and Signal to Noise Ratio


Lecture 4 - Time Domain Spectroscopy


Lecture 5 - Frequency Modulation for Fourier Transform Spectroscopy


Lecture 6 - Rigid Rotor Model for Diatomic Molecules


Lecture 7 - Recapitulation of Quantum Mechanics


Lecture 8 - Conditions for Microwave Activity - I


Lecture 9 - Conditions for Microwave Activity - II


Lecture 10 - Microwave Spectra: Diatomic Molecules


Lecture 11 - Simple Harmonic Oscillator


Lecture 12 - Selection Rule


Lecture 13 - High Resolution IR Spectra


Lecture 14 - Anharmonic Oscillator and Raman Effect


Lecture 15 - Semi Classical Treatment: Radiation-Matter


Lecture 16 - Time Dependent Perturbation Theory


Lecture 17 - Transition Moment Integral


Lecture 18 - Transition Probability and Natural Linewidth


Lecture 19 - Einstein Treatment


Lecture 20 - Relationship Between Theoretical and Experimental Quantities


Lecture 21 - Level System: Concluding Remark - I


Lecture 22 - Level System: Concluding Remark - II


Lecture 23 - Laser Basic


Lecture 24 - Applications of Laser in Spectroscopy


Lecture 25 - Laser in Spectroscopy : Ultrafast Dynamics


Lecture 26 - Snapshot of Bond Breaking


Lecture 27 - Raman Effect


Lecture 28 - Raman Spectroscopy: Quantum Theory of Raman Effect


Lecture 29 - Raman Spectroscopy and Beyond Dipole Approximation


Lecture 30 - Symmetry in Chemistry : An Introduction


Lecture 31 - Symmetry Operations : Transformation Matrices


Lecture 32 - Representations Reducible and Irreducible


Lecture 33 - Matrix Representation of Symmetry Point Group


Lecture 34 - Group Theory : Character Table


Lecture 35 - Character Table : Compendium of Irreducible Representations


Lecture 36 - Mulliken Nomenclature, 2D Irreducible Representations and Bases


Lecture 37 - Character Tables for Different Symmetry Point Groups


Lecture 38 - Wave Functions as Basis


Lecture 39 - Symmetry of Atomic and Molecular Orbitals


Lecture 40 - Polyatomic Molecules : Normal Modes of Vibration


Lecture 41 - Determination of Symmetries of Normal Modes of Vibration - I


Lecture 42 - Determination of Symmetries of Normal Modes of Vibration - II


Lecture 43 - A Shortcut to Symmetry of Normal Modes


Lecture 44 - Normal Modes : Internal Motion IR and Raman Activity


Lecture 45 - IR and Raman Activity - I


Lecture 46 - IR and Raman Activity - II


Lecture 47 - Electronic Spectroscopy : Introduction


Lecture 48 - Electronic Spectra


Lecture 49 - Rotational Fine Structure


Lecture 50 - Symmetry of Electronic States


Lecture 51 - Electronic States of Oxygen


Lecture 52 - Electronic States and Transitions of Benzene


Lecture 53 - Vibronic Coupling


Lecture 54 - Electronic Spectrum of Benzene


Lecture 55 - Basics of NMR Spectroscopy - I


Lecture 56 - Basics of NMR Spectroscopy - II


Lecture 57 - Spin Spin Coupling- AX systems


Lecture 58 - Coupling in A2 systems


Lecture 59 - Coupling in A2 systems (Continued...)


Lecture 60 - NMR: Spectra and Measurement, FT NMR 900 Pulses


Lecture 61 - FT NMR 1800 Pulses and Relaxation Phenomenon


Lecture 62 - Relaxation Phenomenon: Inversion Recovery