Lecture 1 - Introduction to Python for Data Science
Lecture 2 - Introduction to Python
Lecture 3 - Introduction to Spyder - Part 1
Lecture 4 - Introduction to Spyder - Part 2
Lecture 5 - Variables and Datatypes
Lecture 6 - Operators
Lecture 7 - Lists Part - 1
Lecture 8 - Lists Part - 2
Lecture 9 - Tuples
Lecture 10 - Dictionary
Lecture 11 - Sets
Lecture 12 - Numpy Part - 1
Lecture 13 - Numpy Part - 2
Lecture 14 - Matrix
Lecture 15 - Linear algebra Part - 1
Lecture 16 - Linear algebra Part - 2
Lecture 17 - Reading data
Lecture 18 - Pandas Dataframes - I
Lecture 19 - Pandas Dataframes - II
Lecture 20 - Pandas Dataframes - III
Lecture 21 - Control structures and Functions
Lecture 22 - Exploratory data analysis
Lecture 23 - Data Visualization - Part I
Lecture 24 - Data Visualization - Part II
Lecture 25 - Dealing with missing data
Lecture 26 - Module : Predictive Modelling
Lecture 27 - Linear Regression
Lecture 28 - Model Assessment
Lecture 29 - Diagnostics to Improve Linear Model Fit
Lecture 30 - Multiple Linear Regression
Lecture 31 - Cross Validation
Lecture 32 - Classification
Lecture 33 - Logistic Regression
Lecture 34 - Logistic Regression (Continued...)
Lecture 35 - Performance Measures
Lecture 36 - K - Nearest Neighbors (kNN)
Lecture 37 - K - means Clustering
Lecture 38 - Decision Trees
Lecture 39 - Introduction to Classification Case Study
Lecture 40 - Case Study on Classification - Part I
Lecture 41 - Case Study on Classification - Part II
Lecture 42 - Introduction to Regression Case Study
Lecture 43 - Case Study on Regression - Part I
Lecture 44 - Case Study on Regression - Part II
Lecture 45 - Case Study on Regression - Part III