NOC:Computational Electromagnetics


Lecture 1 - Chain rule of differentiation


Lecture 2 - Gradient, Divergence, and Curl operators


Lecture 3 - Common theorems in vector calculus


Lecture 4 - Corollaries of these theorems


Lecture 5 - Mathematical History


Lecture 6 - Different regimes of Maxwell's equations


Lecture 7 - Different ways of solving them


Lecture 8 - Maxwell's Equations


Lecture 9 - Boundary Conditions


Lecture 10 - Uniqueness Theorem


Lecture 11 - Equivalence Theorem


Lecture 12 - Simple Numerical Integration


Lecture 13 - Interpolating a Function


Lecture 14 - Gauss Quadrature


Lecture 15 - Line Charge Problem


Lecture 16 - Solving the Integral Equation


Lecture 17 - Basis Functions


Lecture 18 - Helmholtz Equation


Lecture 19 - Solving Helmholtz Equation


Lecture 20 - Huygen's principle and the Extinction theorem


Lecture 21 - Formulating the integral equations


Lecture 22 - Conclusions of surface integral equations


Lecture 23 - Motivations for Green's functions


Lecture 24 - A one-dimensional example


Lecture 25 - 1-D example: alternate representation


Lecture 26 - 2-D wave example : finding solution


Lecture 27 - 2-D wave example : boundary conds


Lecture 28 - 2-D example : Evaluating Constants - Part 1


Lecture 29 - 2-D example : Evaluating Constants - Part 2


Lecture 30 - 3-D example


Lecture 31 - Motivation for MoM


Lecture 32 - Linear Vector Spaces


Lecture 33 - Formulating Method of Moments


Lecture 34 - Surface Integral Equations: Recap


Lecture 35 - Surface Integral Equations: Evaluating the Integrals - Part 1


Lecture 36 - Surface Integral Equations: Evaluating the Integrals - Part 2


Lecture 37 - Surface Integral Equations: Conclusion


Lecture 38 - Volume Integral Equations:Setting Up


Lecture 39 - Volume Integral Equations:Solving - Part 1


Lecture 40 - Volume Integral Equations:Solving - Part 2


Lecture 41 - Volume Integral Equations:Summary


Lecture 42 - Surface integral equations for PEC


Lecture 43 - Surface v/s volume integral equations


Lecture 44 - Definition of radar cross-section


Lecture 45 - Computational Considerations


Lecture 46 - History and Overview of the FEM


Lecture 47 - Basic framework of FEM


Lecture 48 - 1D Basis Functions


Lecture 49 - 2D Basis Functions


Lecture 50 - Weak form of 1D-FEM - Part 1


Lecture 51 - Weak form of 1D-FEM - Part 2


Lecture 52 - Generating System of Equations for 1D FEM


Lecture 53 - 1D wave equation: Formulation


Lecture 54 - 1D Wave Equation: Boundary Conditions


Lecture 55 - 1D Wave Equation: Basis and testing functions


Lecture 56 - 1D Wave Equation: Matrix assembly


Lecture 57 - 2D FEM Shape Functions


Lecture 58 - Converting to Weak Form (2D FEM)


Lecture 59 - Radiation Boundary Condition


Lecture 60 - Total field formulation


Lecture 61 - Scattered field formulation


Lecture 62 - Comparing total and scattered field formulation


Lecture 63 - Matrix assembly - Part 1


Lecture 64 - Matrix assembly - Part 2


Lecture 65 - Computing Far Field


Lecture 66 - Numerical Aspects of 2D FEM


Lecture 67 - Summary of FEM Procedure


Lecture 68 - Introduction to FDTD


Lecture 69 - 2D FDTD Formulation : Stencil


Lecture 70 - 2D FDTD Formulation : Time Stepping


Lecture 71 - 2D FDTD Formulation : Divergence Conditions


Lecture 72 - Stability Criteria - Part 1


Lecture 73 - Stability Criteria - Part 2


Lecture 74 - Stability Criteria - Higher Dimensions


Lecture 75 - Accuracy Considerations - 1D


Lecture 76 - Accuracy Considerations - Higher Dimensions


Lecture 77 - Dealing with non-dispersive dielectric media


Lecture 78 - Dealing with dispersive dielectric media


Lecture 79 - Debye Model - Part 1


Lecture 80 - Debye Model - Part 2


Lecture 81 - Absorbing Boundary Conditions - 1D


Lecture 82 - Absorbing Boundary Conditions - 2D


Lecture 83 - Implementing ABC in FDTD


Lecture 84 - Failure of ABC


Lecture 85 - Perfectly Matched Layers (PML) - Introduction


Lecture 86 - Implementing PML using Coordinate Stretching


Lecture 87 - PML - Phase Matching


Lecture 88 - PML - Tangential Boundary Conditions


Lecture 89 - Perfectly Matched Interface


Lecture 90 - PML theory - Summary


Lecture 91 - Implementing PML into FDTD - Part 1


Lecture 92 - Implementing PML into FDTD - Part 2


Lecture 93 - Sources in FDTD - Currents


Lecture 94 - Sources in FDTD - Part 2


Lecture 95 - Summary of FDTD


Lecture 96 - MEEP : FDTD in action


Lecture 97 - Inverse Problems - Introduction


Lecture 98 - Inverse Problems - Mathematical Formulation


Lecture 99 - Inverse Problems - Challenges


Lecture 100 - Inverse Problems - Non-Linearity


Lecture 101 - Inverse Problems - Summary


Lecture 102 - Antennas - Potential formulation


Lecture 103 - Antennas - Hertz Dipole - Part 1


Lecture 104 - Antennas - Hertz Dipole - Part 2


Lecture 105 - Antennas - Radiation Patterns


Lecture 106 - Antennas - Motivation for CEM


Lecture 107 - Antennas - Pocklington’s Integral Equation - Part 1


Lecture 108 - Antennas - Pocklington’s Integral Equation - Part 2


Lecture 109 - Antennas - Source Modeling


Lecture 110 - Antennas - Circuit Model


Lecture 111 - Antennas - MoM details


Lecture 112 - Antennas - Mutual Coupling - Part 1


Lecture 113 - Antennas - Mutual Coupling - Part 2


Lecture 114 - Hybrid Methods - Motivation


Lecture 115 - Finite Element-Boundary Integral - Part 1


Lecture 116 - Finite Element-Boundary Integral - Part 2


Lecture 117 - Finite Element-Boundary Integral - Part 3