
Scientific Computing Using Matlab
Professor Vivek Aggarwal & Mani Mehra

Department of Mathematics
Indian Institute of Technology, Delhi/DTU

Lecture 16
Matlab Code For Newton-Raphson and

Regula-Falsi Method

Hello viewers, welcome back to the course on scientific computing using MATLAB. So, today

we are going to start lecture 16. So in the previous lecture we have written the MATLAB code

for a fixed point method. So today we will start with the MATLAB code of the Newton-Raphson

method. So let us write this one.

(Refer Slide Time: 00:41)

So in the previous class, we have shown that the rate of convergence was 0.2.

(Refer Slide Time: 00:47)

So I will just write the CLC and clear all. Now based on this one.

(Refer Slide Time: 00:54)

So this is my fixed point iteration.

(Refer Slide Time: 00:57)

So I will start writing a new code. So let us define a function. So, the output of this function is I

want my solution and the number of iterations and then I want xlist. So, I want only three output

from there. So that is equal to I will write Newton method, the argument to the function will be

passed, the derivative of the function will be passed the initial data and the tolerance. So, this is

the requirement of the Newton-Raphson methods.

Now from the Newton-Raphson method, I will write so from here I can write that the and from

here we know that that is equal to x at xnew I can write:

So, I will this value will be saved in the aold the new variable I am defining, I will start my itr =

0. Then, I will define my xlist so, the value this is equal to the initial a whatever we have and

then I can define my f print f. So, it will give you that so I will write at the initial a new line and I

will write my initial approximation or initial guess.

function[sol,no_itr,xlist]= Newton(f,df,a,tol)

% Newton Raphson method

% xnew=xold-f(xold)/f'(xold)

aold=a;itr=0;

xlist(1)=a;

fprintf(' \n Initial app., a=%7.6f \n',a);

while abs(f(aold)) > tol && itr < 100

anew=aold-f(aold)/df(aold);

aold=anew;

itr=itr+1;

xlist(itr+1)=anew;

fprintf(' At itr=%d, a=%7.6f, f(a)=%7.6f \n',itr,aold,f(aold));

end

sol=anew;

no_itr=itr;

So this while loop will, I will enter the while loop when this value and this value both are true. If

either of them is not true, then this will come out from the while loop. So I am finding that what

is the value of the f at the root, if it is either greater than tolerance and the iteration is less than

100.

So, in that case I will enter there and then I will find my anew. So, this I can put on my x list is

equal to itr + 1. So, that is equal to a. So, what are the anew or aold because here it is value same,

I will put the value here and then I will write from here I will write my value of fprintf. So, I can

find number itr, so that is equal to itr, so, that is the Newton-Raphson method.

(Refer Slide Time: 08:52)

I can save this one as save as Newton. So, this is the Newton-Raphson method now.

(Refer Slide Time: 08:58)

Now I can change in the main loop. So, now everything will be same except all these terms up to

here I can now everything will be same here. So maybe I can so the same code I will use for

Newton method. So in the Newton methods, we define the new function, so let us write down the

function. So, let us say take f is equal to at the rate maybe I will take a simple function.

x2-9 =0

So this is the function I am defining. then I define df so, df = 2x. So, this is the value of the 2x.

Now, I know that from this equation the xexact = 3 or -3. So, in this case we have a roots x

square is equal to 9. So, x= ± 3, I am just looking for the positive root. So, I will just take xexact

= 3. Now, in this case so, other things I will just print from the above and I will write and I will

comment this one.

Now, my fe this one and this is the root I am finding. So here, I am having the four outputs, let us

see that how many outputs are there in Newton.

(Refer Slide Time: 11:06)

So you can see that solution, number of iteration and x list. So we have only three numbers of

outputs, so I have to change this one.

(Refer Slide Time: 11:17)

So I am getting this. So I am not passing the value of the function at that. So I am passing my

root and iteration the list. And this is the value I am passing, so fixed, now I have to change this

one to Newton. So in the Newton, I am passing my f, my df the value of a and the tolerance. So

from here, I am getting my xlist xexact, this is the value and that is the convergence. So I hope I

should this should work. So I will just save this one and run this.

(Refer Slide Time: 12:04)

So let us see what is happening here. Undefined function or variable a, in the main.

(Refer Slide Time: 12:09)

This is my main. So my a is I am suppose 3 is the root. So let us start with 2, so I am starting

with the a = 2, now let us see.

(Refer Slide Time: 12:31)

So undefined the tolerance because I have not defined the tolerance there.

(Refer Slide Time: 12:37)

So let us define the tolerance also. So I will define the same tolerance, now it is done.

(Refer Slide Time: 12:52)

And that is the solution. So from here you can see that I started with the a = 2 and then my roots

approximation to the roots is the first approximation it is giving a = 3.25 that is the value of the

function. And after the fourth iteration it gives you the value 3 exactly. And that is the value of

the function and the rate of convergence it started with 2.35, then 1.98. And after that it is given

2.

%----------------Newton method----

f=@(x) x^3-8; xexact=2;

df=@(x) 3*x^2;

a=1; tol=.5e-5;

[root,itr,xlist]=Newton(f,df,a,tol);

And we also know that this rate of convergence for the Newton-Raphson method is of order 2.

So, in this case it is coming exactly 2.

(Refer Slide Time: 13:32)

Because in this case, I am also getting the exact root that is equal to 3, because in the previous

well case, we are getting the exact root is equal to 2.331. So, that is also the approximation root

of that, but in this case it is giving you the same value. So, maybe I can change this one and let

us take minus 3 and I will start at maybe -1, let us see what would happen.

(Refer Slide Time: 14:07)

So, in this case, it is giving the 2 that infinity like it is coming like, because somewhere we have

to find the value of absolute value. So, it started with 1, then -5, then -3, -3, -3 and then it came

to 3. because the initial approximation, if you see from the Newton-Raphson method, we have a

sufficient condition for the convergence. So, that sufficient condition we have to take care

whenever we start with the initial condition.

So, here I am starting just with the a raise to minus 1 and then later on we found that we are

reaching towards the root and root in - 3 and then the rate of convergence here also coming 2, so

that we have to take care.

(Refer Slide Time: 14:55)

Maybe I can start with some other equation and then let us write it. So, in this case what is

happening and getting my exact root that is 2 this will be 3 star x raise to power 2. And then I

will start with suppose 1 let us see this one.

(Refer Slide Time: 15:28)

And then I will find out the root here or that is the equation. So, I will start with 1 then it is

giving the first iteration and after the 6 iteration I am getting the root that is 2 and the rate of

convergence is 2.

(Refer Slide Time: 15:52)

So, in this case we can see that Newton-Raphson method, we started with the simple equation

and after doing this one we are able to find that the rate of convergence for the Newton-Raphson

is 2, so that is all about how we can find the Newton-Raphson method. Now we can write the

new code also.

(Refer Slide Time: 16:09)

So let us start with the new code. And that code we are going to define is basically Regula-Falsi.

So, let us do the code of Regula-Falsi. So in this case of I will define the function and then I will

find the value of root and iteration, the number of iteration and then xlist and then I will find

Regula and then in this Regula I will pass my function f the initial two guess because here we

have to give the two guesses and then the tolerance.

So, this is the function Regula we have to define and then, so in this case also I can write that

what is the value of this one.

function [root,no_itr,xlist]=regula(f,a,b,tol)

if f(a)*f(b) >0

disp(' No root lies in the interval (a,b)');

return;

end

(Refer Slide Time: 18:27)

So, instead of writing again and again the same thing I maybe just copy so, I will open the

bisection method.

(Refer Slide Time: 18:31)

So, I will just because in the bisection method, we had the advantage that we can find the

number of iteration we are going to do to get the to achieve that accuracy of the root but in this

case, we cannot do that. So, I will start with that iteration 0 and that is the value.

(Refer Slide Time: 18:57)

So, I just copy paste from here and I can apply here, so I start with the iteration equal to 0 and

then at the iteration 0 initial value a and b, I can define. So, this is the value it will be shown.

Now, I will again I the same thing.

(Refer Slide Time: 19:27)

So, I will copy this point Newton-Raphson.

(Refer Slide Time: 19:36)

function [root,no_itr,xlist]=regula(f,a,b,tol)

if f(a)*f(b) >0

disp(' No root lies in the interval (a,b)');

return;

end

itr=0;

xlist(1)=a; xlist(2)=b;

fprintf('\n At itr=%d, Initial a=%7.6f, b=%7.6f ',itr,a,b);

c=b-(f(b)*(b-a)/(f(b)-f(a)));

while abs(f(c)) > tol && itr < 100

c=b-(f(b)*(b-a)/(f(b)-f(a)));

if f(c)==0

a=c; b=c;

elseif f(b)*f(c)>0

b=c;

else

a=c;

end

itr=itr+1;

xlist(itr+2)=c;

fprintf('\n At itr=%d, a=%7.6f, b=%7.6f ',itr,a,b);

end

root=c;

no_itr=itr;

So this is the iteration initial a. So this is not the value of these iterations a and b I am getting and

then I will put the end of this. So, from here I will get my root that is, that is equal to c and the

number of iterations so, that is equal to itr. So, that is the value we are going to get.

(Refer Slide Time: 24:25)

And I will save this function as Regula.

(Refer Slide Time: 24:35)

Now, I will go to the main program. So, this is the program we are going to get so, in this case

also we are we have to in this one I just make the comment and all other I will so, in the

Bisection method, I know that two initial approximations are needed, so I will use this one. So I

will take my f here, and then my a and b is minus 1 then is equal to tolerance I am taking 0.5 and

then from here I am calling this Regula-Falsi method.

(Refer Slide Time: 25:32)

And the Regula-Falsi I am so, that is the three conditions are there we just copy.

(Refer Slide Time: 25:42)

And here you can write.

%------------Regula Falsi--------

%function [root,no_itr,xlist]=regula(f,a,b,tol)

f=@(x) cos(x)-x*exp(x); xexact=0.5771;

a=0; b=1; tol=.5*10^(-5);

[root, no_itr, xlist]=regula(f,a,b,tol);

e=abs(xlist-xexact);

q=zeros(length(e)-2,1);

for n=2:length(e)-1

q(n-1)=abs (log(e(n+1)/e(n))/log(e(n)/e(n-1)));

end

for i=1: length(q)

fprintf('the rate of convergence is =%4.2f \n',q(i));

% end

So, that is suppose I am taking is 0.5771. So that was the approximation, approximate root we

were getting in the case of Bisection method. So let us check that whether we are able to get this

result or not. So, I will run this one and let us see.

(Refer Slide Time: 27:05)

So that is a we are getting, so I started -2 and -1 and after that, okay so in this case I am getting

this root -1.86. Okay?

(Refer Slide Time: 27:22)

That means I am doing let us see here, 1, 2. Let us see.

(Refer Slide Time: 27:38)

What is my f? So I just put the value of f, 0. It is coming 1, f1, 2. Okay. So I have to choose 0

and 1.

(Refer Slide Time: 27:57)

So let us choose 0 and 1. So let us choose this one.

(Refer Slide Time: 28:15)

So now look and see that, what are the results? So let us see. Yeah, so from here, you can see that

I am getting my initial approximation 0 and 1. And with the time as the iteration passes, I am

getting my solution 0.517756. So that is the approximate solution I am getting. And the rate of

convergence started with 1.53 and then it was reduced to 0.333. So in this case, for these initial

conditions, I am getting the, the rate of convergence is 0.33.

Because this is a Regula-Falsi method and we know that the Regula-Falsi method the rate of
convergence is 1.61 or 1.62. So but that is the maximum rate of conventions we can have, but in
this case based on my initial condition and I am finding for this rate of convergence 0.33 for this
case what it is, it will be definitely less than 1.62.

(Refer Slide Time: 29:22)

And in this case, I am already told you that for this type of equation, we do not know what is the

value of xexact. So, here also I am choosing my approximate value of this one. So, if I choose

the approximate value of the solution, then also it may happen then the rate of convergence will

become lesser than the whatever expected. So, that is the case here we are getting, okay?

So, this is the way we have found the Regula-Falsi method and then based on the Regula-Falsi

method and the Newton method, we have shown that how the rate of convergence can be applied

or can be approximated within the same program whatever the program we are writing for the

Regula-Falsi and the Newton-Raphson method. So maybe in the next lecture, we will continue

for this one. So thanks for viewing this one, thanks very much.

