NOC:Engineering Mathematics-I


Lecture 1 - Rolle’s Theorem


Lecture 2 - Mean Value Theorems


Lecture 3 - Indeterminate Forms - Part 1


Lecture 4 - Indeterminate Forms - Part 2


Lecture 5 - Taylor Polynomial and Taylor Series


Lecture 6 - Limit of Functions of Two Variables


Lecture 7 - Evaluation of Limit of Functions of Two Variables


Lecture 8 - Continuity of Functions of Two Variables


Lecture 9 - Partial Derivatives of Functions of Two Variables


Lecture 10 - Partial Derivatives of Higher Order


Lecture 11 - Derivative and Differentiability


Lecture 12 - Differentiability of Functions of Two Variables


Lecture 13 - Differentiability of Functions of Two Variables (Continued...)


Lecture 14 - Differentiability of Functions of Two Variables (Continued...)


Lecture 15 - Composite and Homogeneous Functions


Lecture 16 - Taylor’s Theorem for Functions of Two Variables


Lecture 17 - Maxima and Minima of Functions of Two Variables


Lecture 18 - Maxima and Minima of Functions of Two Variables (Continued...)


Lecture 19 - Maxima and Minima of Functions of Two Variables (Continued...)


Lecture 20 - Constrained Maxima and Minima


Lecture 21 - Improper Integrals


Lecture 22 - Improper Integrals (Continued...)


Lecture 23 - Improper Integrals (Continued...)


Lecture 24 - Improper Integrals (Continued...)


Lecture 25 - Beta and Gamma Function


Lecture 26 - Beta and Gamma Function (Continued...)


Lecture 27 - Differentiation Under Integral Sign


Lecture 28 - Double Integrals


Lecture 29 - Double Integrals (Continued...)


Lecture 30 - Double Integrals (Continued...)


Lecture 31 - Integral Calculus Double Integrals in Polar Form


Lecture 32 - Integral Calculus Double Integrals: Change of Variables


Lecture 33 - Integral Calculus Double Integrals: Surface Area


Lecture 34 - Integral Calculus Triple Integrals


Lecture 35 - Integral Calculus Triple Integrals (Continued...)


Lecture 36 - System of Linear Equations


Lecture 37 - System of Linear Equations Gauss Elimination


Lecture 38 - System of Linear Equations Gauss Elimination (Continued...)


Lecture 39 - Linear Algebra - Vector Spaces


Lecture 40 - Linear Independence of Vectors


Lecture 41 - Vector Spaces Spanning Set


Lecture 42 - Vector Spaces Basis and Dimension


Lecture 43 - Rank of a Matrix


Lecture 44 - Linear Transformations


Lecture 45 - Linear Transformations (Continued....)


Lecture 46 - Eigenvalues and Eigenvectors


Lecture 47 - Eigenvalues and Eigenvectors (Continued...)


Lecture 48 - Eigenvalues and Eigenvectors (Continued...)


Lecture 49 - Eigenvalues and Eigenvectors (Continued...)


Lecture 50 - Eigenvalues and Eigenvectors: Diagonalization


Lecture 51 - Differential Equations - Introduction


Lecture 52 - First Order Differential Equations


Lecture 53 - Exact Differential Equations


Lecture 54 - Exact Differential Equations (Continued...)


Lecture 55 - First Order Linear Differential Equations


Lecture 56 - Higher Order Linear Differential Equations


Lecture 57 - Solution of Higher Order Homogeneous Linear Equations


Lecture 58 - Solution of Higher Order Non-Homogeneous Linear Equations


Lecture 59 - Solution of Higher Order Non-Homogeneous Linear Equations (Continued...)


Lecture 60 - Cauchy-Euler Equations