NOC:Linear Algebra (Prof. Pranav Haridas)


Lecture 1 - Vector Spaces


Lecture 2 - Examples of Vector Spaces


Lecture 3 - Vector Subspaces


Lecture 4 - Linear Combinations and Span


Lecture 5 - Linear Independence


Lecture 6 - Basis


Lecture 7 - Dimension


Lecture 8 - Replacement theorem consequences


Lecture 9 - Rank Nullity


Lecture 10 - Linear Transformations


Lecture 11 - Linear Transformation Basis


Lecture 12 - Linear Transformation and Matrices


Lecture 13 - Problem session


Lecture 14 - Linear Transformation and Matrices (Continued...)


Lecture 15 - Invertible Linear Transformations


Lecture 16 - Invertible Linear Transformations and Matrices


Lecture 17 - Change of Basis


Lecture 18 - Product of Vector Spaces


Lecture 19 - Quotient Spaces


Lecture 20 - Dual Spaces


Lecture 21 - Row operations


Lecture 22 - Rank of a Matrix


Lecture 23 - Inverting matrices


Lecture 24 - Determinants


Lecture 25 - Problem Session


Lecture 26 - Diagonal Matrices


Lecture 27 - Eigenvectors and eigenvalues


Lecture 28 - Computing eigenvalues


Lecture 29 - Characteristic ploynomia


Lecture 30 - Diagonalizibility


Lecture 31 - Multiplicity of eigenvalues


Lecture 32 - Invariant subspaces


Lecture 33 - Complex Vector Spaces


Lecture 34 - Inner Product Spaces


Lecture 35 - Inner Product and Length


Lecture 36 - Orthogonality


Lecture 37 - Problem Session


Lecture 38 - Problem Session


Lecture 39 - Orthonormal Basis


Lecture 40 - Gram Schmidt Orthogonalization


Lecture 41 - Orthogonal Complements


Lecture 42 - Problem Session


Lecture 43 - Riesz Representation Theorem


Lecture 44 - Adjoint of a linear transformation


Lecture 45 - Problem Session


Lecture 46 - Normal Operators


Lecture 47 - Self Adjoint Operators


Lecture 48 - Spectral Theorem