NOC:Multivariable Calculus


Lecture 1 - Functions of several variables


Lecture 2 - Limits for multivariable functions - I


Lecture 3 - Limits for multivariable functions - II


Lecture 4 - Continuity of multivariable functions


Lecture 5 - Partial Derivatives - I


Lecture 6 - Partial Derivatives - II


Lecture 7 - Differentiability - I


Lecture 8 - Differentiability - II


Lecture 9 - Chain rule - I


Lecture 10 - Chain rule - II


Lecture 11 - Change of variables


Lecture 12 - Euler’s theorem for homogeneous functions


Lecture 13 - Tangent planes and Normal lines


Lecture 14 - Extreme values - I


Lecture 15 - Extreme values - II


Lecture 16 - Lagrange multipliers


Lecture 17 - Taylor’s theorem


Lecture 18 - Error approximation


Lecture 19 - Polar-curves


Lecture 20 - Multiple Integrals


Lecture 21 - Change Of Order Of Integration


Lecture 22 - Change of Variables in Multiple Integral


Lecture 23 - Introduction to Gamma Function


Lecture 24 - Introduction to Beta Function


Lecture 25 - Properties of Beta and Gamma Functions - I


Lecture 26 - Properties of Beta and Gamma Functions - II


Lecture 27 - Dirichlet's Integral


Lecture 28 - Applications of Multiple Integrals


Lecture 29 - Vector Differentiation


Lecture 30 - Gradient of a Scalar Field and Directional Derivative


Lecture 31 - Normal Vector and Potential field


Lecture 32 - Gradient (Identities), Divergence and Curl (Identities)


Lecture 33 - Some Identities on Divergence and Curl


Lecture 34 - Line Integral (I)


Lecture 35 - Applications of Line Integrals


Lecture 36 - Green's Theorem


Lecture 37 - Surface Area


Lecture 38 - Surface Integral


Lecture 39 - Divergence Theorem of Gauss


Lecture 40 - Stoke's Theorem