Engineering Fracture Mechanics


Lecture 1 - EFM Course Outline


Lecture 2 - Spectacular Failures


Lecture 3 - Lessons from Spectacular Failures


Lecture 4 - LEFM and EPFM


Lecture 5 - Fracture Mechanics is Holistic


Lecture 6 - Fatigue Crack Growth Model


Lecture 7 - Crack Growth and Fracture Mechanisms


Lecture 8 - Elastic Strain Energy


Lecture 9 - Fracture Strength by Griffith


Lecture 10 - Energy Release Rate


Lecture 11 - Utility of Energy Release Rate


Lecture 12 - Pop-in Phenomenon


Lecture 13 - Displacement and Stress Formulations


Lecture 14 - Forms of Stress Functions


Lecture 15 - Airy’s Stress Function for Mode-I


Lecture 16 - Westergaard Solution of Stress Field for Mode-I


Lecture 17 - Displacement Field for Mode-I


Lecture 18 - Relation between KI and GI


Lecture 19 - Stress Field in Mode-II


Lecture 20 - Generalised Westergaard Approach


Lecture 21 - William’s Eigen Function Approach


Lecture 22 - Multi-parameter Stress Field Equations


Lecture 23 - Validation of Multi-parameter Field Equations


Lecture 24 - Discussion Session - I


Lecture 25 - Evaluation of SIF for Various Geometries


Lecture 26 - SIF for Embedded Cracks


Lecture 27 - SIF for Surface Cracks


Lecture 28 - Modeling of Plastic Deformation


Lecture 29 - Irwin’s Model


Lecture 30 - Dugdale Model


Lecture 31 - Fracture Toughness Testing


Lecture 32 - Plane Strain Fracture Toughness Testing


Lecture 33 - Plane Stress Fracture Toughness Testing


Lecture 34 - Paris Law and Sigmoidal Curve


Lecture 35 - Crack Closure


Lecture 36 - Crack Growth Models


Lecture 37 - J-Integral


Lecture 38 - HRR Field and CTOD


Lecture 39 - FAD and Mixed Mode Fracture


Lecture 40 - Crack Arrest and Repair Methodologies


Lecture 41 - Discussion Session - II